Feeds Nature

Stream–disk shocks as the origins of peak light in tidal disruption events

  • Hills, J. G. Possible power source of Seyfert galaxies and QSOs. Nature 254, 295–298 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Rees, M. J. Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies. Nature 333, 523–528 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Komossa, S. & Bade, N. The giant X-ray outbursts in NGC 5905 and IC 3599: follow-up observations and outburst scenarios. Astron. Astrophys. 343, 775–787 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Gezari, S. et al. Ultraviolet detection of the tidal disruption of a star by a supermassive black hole. Astrophys. J. 653, L25–L28 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van Velzen, S. et al. Optical discovery of probable stellar tidal disruption flares. Astrophys. J. 741, 73 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Gezari, S. et al. An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core. Nature 485, 217–220 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Arcavi, I. et al. A continuum of H- to He-rich tidal disruption candidates with a preference for E+A galaxies. Astrophys. J. 793, 38 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ulmer, A. Flares from the tidal disruption of stars by massive black holes. Astrophys. J. 514, 180–187 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Piran, T., Svirski, G., Krolik, J., Cheng, R. M. & Shiokawa, H. Disk formation versus disk accretion—what powers tidal disruption events? Astrophys. J. 806, 164 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Shiokawa, H., Krolik, J. H., Cheng, R. M., Piran, T. & Noble, S. C. General relativistic hydrodynamic simulation of accretion flow from a stellar tidal disruption. Astrophys. J. 804, 85 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Loeb, A. & Ulmer, A. Optical appearance of the debris of a star disrupted by a massive black hole. Astrophys. J. 489, 573–578 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Guillochon, J., Manukian, H. & Ramirez-Ruiz, E. PS1-10jh: the disruption of a main-sequence star of near-solar composition. Astrophys. J. 783, 23 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Coughlin, E. R. & Begelman, M. C. Hyperaccretion during tidal disruption events: weakly bound debris envelopes and jets. Astrophys. J. 781, 82 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Roth, N., Kasen, D., Guillochon, J. & Ramirez-Ruiz, E. The X-ray through optical fluxes and line strengths of tidal disruption events. Astrophys. J. 827, 3 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Metzger, B. D. & Stone, N. C. A bright year for tidal disruptions. Mon. Not. R. Astron. Soc. 461, 948–966 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Roth, N. & Kasen, D. What sets the line profiles in tidal disruption events? Astrophys. J. 855, 54 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Lodato, G., Cheng, R. M., Bonnerot, C. & Dai, J. L. Simulations of tidal disruption events. Space Sci. Rev. 216, 63 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Hayasaki, K., Stone, N. & Loeb, A. Finite, intense accretion bursts from tidal disruption of stars on bound orbits. Mon. Not. R. Astron. Soc. 434, 909–924 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hayasaki, K., Stone, N. & Loeb, A. Circularization of tidally disrupted stars around spinning supermassive black holes. Mon. Not. R. Astron. Soc. 461, 3760–3780 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Bonnerot, C., Rossi, E. M., Lodato, G. & Price, D. J. Disc formation from tidal disruptions of stars on eccentric orbits by Schwarzschild black holes. Mon. Not. R. Astron. Soc. 455, 2253–2266 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Sadowski, A., Tejeda, E., Gafton, E., Rosswog, S. & Abarca, D. Magnetohydrodynamical simulations of a deep tidal disruption in general relativity. Mon. Not. R. Astron. Soc. 458, 4250–4268 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Bonnerot, C. & Lu, W. Simulating disc formation in tidal disruption events. Mon. Not. R. Astron. Soc. 495, 1374–1391 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bonnerot, C., Lu, W. & Hopkins, P. F. First light from tidal disruption events. Mon. Not. R. Astron. Soc. 504, 4885–4905 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Andalman, Z. L., Liska, M. T. P., Tchekhovskoy, A., Coughlin, E. R. & Stone, N. Tidal disruption discs formed and fed by stream–stream and stream–disc interactions in global GRHD simulations. Mon. Not. R. Astron. Soc. 510, 1627–1648 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hung, T. et al. Revisiting optical tidal disruption events with iPTF16axa. Astrophys. J. 842, 29 (2017).

    Article 
    ADS 

    Google Scholar
     

  • van Velzen, S. et al. Seventeen tidal disruption events from the first half of ZTF survey observations: entering a new era of population studies. Astrophys. J. 908, 4 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Yalinewich, A., Steinberg, E. & Sari, R. RICH: open-source hydrodynamic simulation on a moving Voronoi mesh. Astrophys. J. Suppl. Ser. 216, 35 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Sadowski, A. et al. Global simulations of axisymmetric radiative black hole accretion discs in general relativity with a mean-field magnetic dynamo. Mon. Not. R. Astron. Soc. 447, 49–71 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Stone, N. C. & Metzger, B. D. Rates of stellar tidal disruption as probes of the supermassive black hole mass function. Mon. Not. R. Astron. Soc. 455, 859–883 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bricman, K. & Gomboc, A. The prospects of observing tidal disruption events with the large synoptic survey telescope. Astrophys. J. 890, 73 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Jonker, P. G., Stone, N. C., Generozov, A., van Velzen, S. & Metzger, B. Implications from late-time X-ray detections of optically selected tidal disruption events: state changes, unification, and detection rates. Astrophys. J. 889, 166 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ben-Ami, S. et al. The scientific payload of the Ultraviolet Transient Astronomy Satellite (ULTRASAT). In Proc. SPIE, Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray Vol. 12181 (eds den Herder, J.-W. A. et al.) 1218105 (SPIE, 2022).

  • Lu, W., Kumar, P. & Narayan, R. Stellar disruption events support the existence of the black hole event horizon. Mon. Not. R. Astron. Soc. 468, 910–919 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wen, S., Jonker, P. G., Stone, N. C. & Zabludoff, A. I. Mass, spin, and ultralight boson constraints from the intermediate-mass black hole in the tidal disruption event 3XMM J215022.4-055108. Astrophys. J. 918, 46 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bade, N., Komossa, S. & Dahlem, M. Detection of an extremely soft X-ray outburst in the HII-like nucleus of NGC 5905. Astron. Astrophys. 309, L35–L38 (1996).

    ADS 

    Google Scholar
     

  • van Velzen, S., Holoien, T. W.-S., Onori, F., Hung, T. & Arcavi, I. Optical-ultraviolet tidal disruption events. Space Sci. Rev. 216, 124 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Lodato, G., King, A. R. & Pringle, J. E. Stellar disruption by a supermassive black hole: is the light curve really proportional to t−5/3? Mon. Not. R. Astron. Soc. 392, 332–340 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gallegos-Garcia, M., Law-Smith, J. & Ramirez-Ruiz, E. Tidal disruptions of main-sequence stars of varying mass and age: inferences from the composition of the fallback material. Astrophys. J. 857, 109 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Law-Smith, J. A. P., Coulter, D. A., Guillochon, J., Mockler, B. & Ramirez-Ruiz, E. Stellar Tidal Disruption Events with Abundances and Realistic Structures (STARS): library of fallback rates. Astrophys. J. 905, 141 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Guillochon, J. & Ramirez-Ruiz, E. A dark year for tidal disruption events. Astrophys. J. 809, 166 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Lu, W. & Bonnerot, C. Self-intersection of the fallback stream in tidal disruption events. Mon. Not. R. Astron. Soc. 492, 686–707 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Paczyńsky, B. & Wiita, P. J. Thick accretion disks and supercritical luminosities. Astron. Astrophys. 88, 23–31 (1980).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Tomida, K., Okuzumi, S. & Machida, M. N. Radiation magnetohydrodynamic simulations of protostellar collapse: nonideal magnetohydrodynamic effects and early formation of circumstellar disks. Astrophys. J. 801, 117 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Pejcha, O., Metzger, B. D. & Tomida, K. Cool and luminous transients from mass-losing binary stars. Mon. Not. R. Astron. Soc. 455, 4351–4372 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ferland, G. J. et al. The 2017 Release Cloudy. Rev. Mex. Astron. Astrofis. 53, 385–438 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Krumholz, M. R., Klein, R. I., McKee, C. F. & Bolstad, J. Equations and algorithms for mixed-frame flux-limited diffusion radiation hydrodynamics. Astrophys. J. 667, 626–643 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Fleck, J. A.Jr & Cummings, J. D. An implicit Monte Carlo scheme for calculating time and frequency dependent nonlinear radiation transport. J. Comput. Phys. 8, 313–342 (1971).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kochanek, C. S. The aftermath of tidal disruption: the dynamics of thin gas streams. Astrophys. J. 422, 508–520 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Bonnerot, C. & Stone, N. C. Formation of an accretion flow. Space Sci. Rev. 217, 16 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Bonnerot, C. & Lu, W. The nozzle shock in tidal disruption events. Mon. Not. R. Astron. Soc. 511, 2147–2169 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carter, B. & Luminet, J.-P. Tidal compression of a star by a large black hole. I Mechanical evolution and nuclear energy release by proton capture. Astron. Astrophys. 121, 97–113 (1983).

    ADS 
    CAS 

    Google Scholar
     

  • Stone, N., Sari, R. & Loeb, A. Consequences of strong compression in tidal disruption events. Mon. Not. R. Astron. Soc. 435, 1809–1824 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Liptai, D., Price, D. J., Mandel, I. & Lodato, G. Disc formation from tidal disruption of stars on eccentric orbits by Kerr black holes using GRSPH. Preprint at https://doi.org/10.48550/arXiv.1910.10154 (2019).

  • Coughlin, E. R., Nixon, C., Begelman, M. C. & Armitage, P. J. On the structure of tidally disrupted stellar debris streams. Mon. Not. R. Astron. Soc. 459, 3089–3103 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hayasaki, K., Bate, M. R. & Loeb, A. Ionization and dissociation induced fragmentation of a tidally disrupted star into planets around a supermassive black hole. Preprint at https://doi.org/10.48550/arXiv.2001.04172 (2020).

  • Steinberg, E., Coughlin, E. R., Stone, N. C. & Metzger, B. D. Thawing the frozen-in approximation: implications for self-gravity in deeply plunging tidal disruption events. Mon. Not. R. Astron. Soc. 485, L146–L150 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kasen, D. & Ramirez-Ruiz, E. Optical transients from the unbound debris of tidal disruption. Astrophys. J. 714, 155–162 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Dai, L., McKinney, J. C. & Miller, M. C. Soft X-ray temperature tidal disruption events from stars on deep plunging orbits. Astrophys. J. Lett. 812, L39 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Wegg, C. Pseudo-Newtonian potentials for nearly parabolic orbits. Astrophys. J. 749, 183 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Dai, L., McKinney, J. C., Roth, N., Ramirez-Ruiz, E. & Miller, M. C. A unified model for tidal disruption events. Astrophys. J. Lett. 859, L20 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, Y.-F., Stone, J. M. & Davis, S. W. Super-Eddington accretion disks around supermassive black holes. Astrophys. J. 880, 67 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arcavi, I. Errors when constraining hot blackbody parameters with optical photometry. Astrophys. J. 937, 75 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Mummery, A. & Balbus, S. A. The spectral evolution of disc dominated tidal disruption events. Mon. Not. R. Astron. Soc. 492, 5655–5674 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wen, S., Jonker, P. G., Stone, N. C., Zabludoff, A. I. & Psaltis, D. Continuum-fitting the X-ray spectra of tidal disruption events. Astrophys. J. 897, 80 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lin, D. et al. A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster. Nat. Astron. 2, 656–661 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Ramirez-Ruiz, E. & Rosswog, S. The Star Ingesting Luminosity of Intermediate-Mass Black Holes in Globular Clusters. Astrophys. J. 697, L77–L80 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Curd, B. Global simulations of tidal disruption event disc formation via stream injection in GRRMHD. Mon. Not. R. Astron. Soc. 507, 3207–3227 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     


  • Fonte original Nature.com

    Artigos relacionados

    Deixe um comentário

    O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

    Botão Voltar ao topo

    Adblock detectado

    Por favor, considere apoiar-nos, desativando o seu bloqueador de anúncios