Feeds Nature

Decoupling excitons from high-frequency vibrations in organic molecules

  • Wilson, J. S. et al. The energy gap law for triplet states in Pt-containing conjugated polymers and monomers. J. Am. Chem. Soc. 123, 9412–9417 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benduhn, J. et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2, 1–6 (2017).

  • Englman, R. & Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18, 285–287 (1970).

    Article 

    Google Scholar
     

  • Wei, Y.-C. et al. Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nat. Photon. 14, 570–577 (2020).

  • Wang, S. F. et al. Polyatomic molecules with emission quantum yields >20% enable efficient organic light-emitting diodes in the NIR(II) window. Nat. Photon. 16, 843–850 (2022).

  • Spano, F. C. Absorption and emission in oligo-phenylene vinylene nanoaggregates: the role of disorder and structural defects. J. Chem. Phys. 116, 5877 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Falke, S. M. et al. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 344, 1001–1005 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rafiq, S., Fu, B., Kudisch, B. & Scholes, G. D. Interplay of vibrational wavepackets during an ultrafast electron transfer reaction. Nat. Chem. 13, 70–76 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Musser, A. J. et al. Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nat. Phys. 11, 352–357 (2015).

  • Schnedermann, C. et al. A molecular movie of ultrafast singlet fission. Nat. Commun. 10, 4207 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, Y., Clafton, S. N., Pensack, R. D., Kee, T. W. & Scholes, G. D. Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer–fullerene blends. Nat. Commun. 5, 4933 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ai, X. et al. Efficient radical-based light-emitting diodes with doublet emission. Nature 563, 536–540 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, H. et al. High stability and luminescence efficiency in donor–acceptor neutral radicals not following the Aufbau principle. Nat. Mater. 18, 977–984 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Abdurahman, A. et al. Understanding the luminescent nature of organic radicals for efficient doublet emitters and pure-red light-emitting diodes. Nat. Mater. 19, 1224–1229 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liebel, M., Schnedermann, C., Wende, T. & Kukura, P. Principles and applications of broadband impulsive vibrational spectroscopy. J. Phys. Chem. A 119, 9506–9517 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, E., Coropceanu, V. & Brédas, J. L. Organic neutral radical emitters: impact of chemical substitution and electronic-state hybridization on the luminescence properties. J. Am. Chem. Soc. 142, 17782–17786 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, S. et al. Effects of substituents on luminescent efficiency of stable triaryl methyl radicals. Phys. Chem. Chem. Phys. 20, 18657–18662 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monserrat, B. Electron–phonon coupling from finite differences. J. Phys. Condens. Matter 30, 083001 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Alvertis, A. M. et al. Impact of exciton delocalization on exciton–vibration interactions in organic semiconductors. Phys. Rev. B 102, 081122 (2020).

  • Hele, T. J. H., Monserrat, B. & Alvertis, A. M. Systematic improvement of molecular excited state calculations by inclusion of nuclear quantum motion: a mode-resolved picture and the effect of molecular size. J. Chem. Phys. 154, 244109 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gruhn, N. E. et al. The vibrational reorganization energy in pentacene: molecular influences on charge transport. J. Am. Chem. Soc. 124, 7918–7919 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, Y. et al. Over 10% EQE near-infrared electroluminescence based on a thermally activated delayed fluorescence emitter. Adv. Funct. Mater. 27, 1700986 (2017).

  • Hu, Y. et al. Efficient near-infrared emission by adjusting the guest–host interactions in thermally activated delayed fluorescence organic light-emitting diodes. Adv. Funct. Mater. 28, 1802597 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Congrave, D. G. et al. A simple molecular design strategy for delayed fluorescence toward 1000 nm. J. Am. Chem. Soc. 141, 18390–18394 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakanotani, H., Masui, K., Nishide, J., Shibata, T. & Adachi, C. Promising operational stability of high-efficiency organic light-emitting diodes based on thermally activated delayed fluorescence. Sci. Rep. 3, 2127 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandanayaka, A. S. D., Matsushima, T. & Adachi, C. Degradation mechanisms of organic light-emitting diodes based on thermally activated delayed fluorescence molecules. J. Phys. Chem. C 119, 23845–23851 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hosokai, T. et al. 58-2: revealing the excited-state dynamics of thermally activated delayed flourescence molecules by using transient absorption spectrospy. SID Symp. Dig. Tech. Pap. 47, 786–789 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Méhes, G., Nomura, H., Zhang, Q., Nakagawa, T. & Adachi, C. Enhanced electroluminescence efficiency in a spiro-acridine derivative through thermally activated delayed fluorescence. Angew. Chem. Int. Ed. 51, 11311–11315 (2012).

    Article 

    Google Scholar
     

  • Liu, Y., Li, C., Ren, Z., Yan, S. & Bryce, M. R. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 3, 18020 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Valeur, B. & Berberan‐Santos, M. N. Molecular Fluorescence: Principles and Applications 2nd edn (Wiley, 2012).

  • Gillett, A. J. et al. Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors. Nat. Commun. 12, 8–17 (2021).

    Article 

    Google Scholar
     

  • Pershin, A. et al. Highly emissive excitons with reduced exchange energy in thermally activated delayed fluorescent molecules. Nat. Commun. 10, 3–7 (2019).

    Article 

    Google Scholar
     

  • Chen, X. K. et al. A unified description of non-radiative voltage losses in organic solar cells. Nat. Energy 6, 799–806 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sneyd, A. J. et al. Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization. Sci. Adv. 7, eabh4232 (2021).

  • Yan, C. et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018).

  • Pandya, R. et al. Exciton–phonon interactions govern charge-transfer-state dynamics in CdSe/CdTe two-dimensional colloidal heterostructures. J. Am. Chem. Soc. 140, 14097–14111 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liebel, M., Schnedermann, C. & Kukura, P. Sub-10-fs pulses tunable from 480 to 980 nm from a NOPA pumped by an Yb:KGW source. Opt. Lett. 39, 4112 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aprà, E. et al. NWChem: past, present, and future. J. Chem. Phys. 152, 184102 (2020).

  • Baker, J., Scheiner, A. & Andzelm, J. Spin contamination in density functional theory. Chem. Phys. Lett. 216, 380–388 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ghosh, P. et al. Data and Code Supporting ’Decoupling Excitons from High-Frequency Vibrations in Organic Molecules’. Apollo — University of Cambridge Repository. https://doi.org/10.17863/CAM.105569 (2024).


  • Fonte original Nature.com

    Artigos relacionados

    Deixe um comentário

    O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

    Botão Voltar ao topo

    Adblock detectado

    Por favor, considere apoiar-nos, desativando o seu bloqueador de anúncios