Decoupling excitons from high-frequency vibrations in organic molecules
Wilson, J. S. et al. The energy gap law for triplet states in Pt-containing conjugated polymers and monomers. J. Am. Chem. Soc. 123, 9412–9417 (2001).
Benduhn, J. et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2, 1–6 (2017).
Englman, R. & Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18, 285–287 (1970).
Wei, Y.-C. et al. Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nat. Photon. 14, 570–577 (2020).
Wang, S. F. et al. Polyatomic molecules with emission quantum yields >20% enable efficient organic light-emitting diodes in the NIR(II) window. Nat. Photon. 16, 843–850 (2022).
Spano, F. C. Absorption and emission in oligo-phenylene vinylene nanoaggregates: the role of disorder and structural defects. J. Chem. Phys. 116, 5877 (2002).
Falke, S. M. et al. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 344, 1001–1005 (2014).
Rafiq, S., Fu, B., Kudisch, B. & Scholes, G. D. Interplay of vibrational wavepackets during an ultrafast electron transfer reaction. Nat. Chem. 13, 70–76 (2021).
Musser, A. J. et al. Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nat. Phys. 11, 352–357 (2015).
Schnedermann, C. et al. A molecular movie of ultrafast singlet fission. Nat. Commun. 10, 4207 (2019).
Song, Y., Clafton, S. N., Pensack, R. D., Kee, T. W. & Scholes, G. D. Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer–fullerene blends. Nat. Commun. 5, 4933 (2014).
Ai, X. et al. Efficient radical-based light-emitting diodes with doublet emission. Nature 563, 536–540 (2018).
Guo, H. et al. High stability and luminescence efficiency in donor–acceptor neutral radicals not following the Aufbau principle. Nat. Mater. 18, 977–984 (2019).
Abdurahman, A. et al. Understanding the luminescent nature of organic radicals for efficient doublet emitters and pure-red light-emitting diodes. Nat. Mater. 19, 1224–1229 (2020).
Liebel, M., Schnedermann, C., Wende, T. & Kukura, P. Principles and applications of broadband impulsive vibrational spectroscopy. J. Phys. Chem. A 119, 9506–9517 (2015).
Cho, E., Coropceanu, V. & Brédas, J. L. Organic neutral radical emitters: impact of chemical substitution and electronic-state hybridization on the luminescence properties. J. Am. Chem. Soc. 142, 17782–17786 (2020).
Dong, S. et al. Effects of substituents on luminescent efficiency of stable triaryl methyl radicals. Phys. Chem. Chem. Phys. 20, 18657–18662 (2018).
Monserrat, B. Electron–phonon coupling from finite differences. J. Phys. Condens. Matter 30, 083001 (2018).
Alvertis, A. M. et al. Impact of exciton delocalization on exciton–vibration interactions in organic semiconductors. Phys. Rev. B 102, 081122 (2020).
Hele, T. J. H., Monserrat, B. & Alvertis, A. M. Systematic improvement of molecular excited state calculations by inclusion of nuclear quantum motion: a mode-resolved picture and the effect of molecular size. J. Chem. Phys. 154, 244109 (2021).
Gruhn, N. E. et al. The vibrational reorganization energy in pentacene: molecular influences on charge transport. J. Am. Chem. Soc. 124, 7918–7919 (2002).
Yuan, Y. et al. Over 10% EQE near-infrared electroluminescence based on a thermally activated delayed fluorescence emitter. Adv. Funct. Mater. 27, 1700986 (2017).
Hu, Y. et al. Efficient near-infrared emission by adjusting the guest–host interactions in thermally activated delayed fluorescence organic light-emitting diodes. Adv. Funct. Mater. 28, 1802597 (2018).
Congrave, D. G. et al. A simple molecular design strategy for delayed fluorescence toward 1000 nm. J. Am. Chem. Soc. 141, 18390–18394 (2019).
Nakanotani, H., Masui, K., Nishide, J., Shibata, T. & Adachi, C. Promising operational stability of high-efficiency organic light-emitting diodes based on thermally activated delayed fluorescence. Sci. Rep. 3, 2127 (2013).
Sandanayaka, A. S. D., Matsushima, T. & Adachi, C. Degradation mechanisms of organic light-emitting diodes based on thermally activated delayed fluorescence molecules. J. Phys. Chem. C 119, 23845–23851 (2015).
Hosokai, T. et al. 58-2: revealing the excited-state dynamics of thermally activated delayed flourescence molecules by using transient absorption spectrospy. SID Symp. Dig. Tech. Pap. 47, 786–789 (2016).
Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).
Méhes, G., Nomura, H., Zhang, Q., Nakagawa, T. & Adachi, C. Enhanced electroluminescence efficiency in a spiro-acridine derivative through thermally activated delayed fluorescence. Angew. Chem. Int. Ed. 51, 11311–11315 (2012).
Liu, Y., Li, C., Ren, Z., Yan, S. & Bryce, M. R. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 3, 18020 (2018).
Valeur, B. & Berberan‐Santos, M. N. Molecular Fluorescence: Principles and Applications 2nd edn (Wiley, 2012).
Gillett, A. J. et al. Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors. Nat. Commun. 12, 8–17 (2021).
Pershin, A. et al. Highly emissive excitons with reduced exchange energy in thermally activated delayed fluorescent molecules. Nat. Commun. 10, 3–7 (2019).
Chen, X. K. et al. A unified description of non-radiative voltage losses in organic solar cells. Nat. Energy 6, 799–806 (2021).
Sneyd, A. J. et al. Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization. Sci. Adv. 7, eabh4232 (2021).
Yan, C. et al. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 3, 18003 (2018).
Pandya, R. et al. Exciton–phonon interactions govern charge-transfer-state dynamics in CdSe/CdTe two-dimensional colloidal heterostructures. J. Am. Chem. Soc. 140, 14097–14111 (2018).
Liebel, M., Schnedermann, C. & Kukura, P. Sub-10-fs pulses tunable from 480 to 980 nm from a NOPA pumped by an Yb:KGW source. Opt. Lett. 39, 4112 (2014).
Aprà, E. et al. NWChem: past, present, and future. J. Chem. Phys. 152, 184102 (2020).
Baker, J., Scheiner, A. & Andzelm, J. Spin contamination in density functional theory. Chem. Phys. Lett. 216, 380–388 (1993).
Ghosh, P. et al. Data and Code Supporting ’Decoupling Excitons from High-Frequency Vibrations in Organic Molecules’. Apollo — University of Cambridge Repository. https://doi.org/10.17863/CAM.105569 (2024).
Fonte original Nature.com